A 1979 Saturn


Saturn_Pioneer11The picture above from Pioneer 11 shows Saturn and its moon Titan. When this image was taken in September, 1979, Pioneer was 2,846,000 km from Saturn. This picture was amazing then. Subsequent missions have provided vastly better images.

Pioneer 11 was launched in 1973 to study the asteroid belt, the environment around Jupiter and Saturn, solar winds, and cosmic rays. It’s one of five spacecraft on trajectories that will take them out of the Solar System. Pioneer 11 will pass near the star Lambda Aquila in around four million years.

Image Credit: NASA

Kissing Moons

Saturn’s two largest moons meet in the sky in a rare apparent embrace. Smog-enshrouded Titan (5,150 km across) glows to the left of  Rhea (1,528 km across).

The image was taken in visible light by the Cassini spacecraft using its narrow-angle camera in 2006. It was about 3.6 million km from Rhea and 5.3 million km from Titan. The moons are in crescent phase.

Image Cedit NASA

Titan and Rhea

Titan and RheaSaturn’s two largest moons, Titan and Rhea, seem to be stacked together in this true-color picture taken by the Cassini spacecraft. This view looks toward the Saturn-facing side of Rhea. North on Rhea is up and rotated 35 degrees to the right.

Separate images taken with red, green and blue filters using Cassini‘s narrow-angle camera were combined to create this natural-color view. The spacecraft was approximately 1.8 million km away from Rhea and 2.5 million km from Titan.

Image Credit: NASA

Sunlight on a Lake

titan_lake_flashTwo bodies in the Solar System have freely flowing liquids on their surface. The Earth has water. Saturn’s largest moon Titan is too cold for liquid water, but it does have liquid methane.

This image shows a flash of sunlight reflected off a lake on Titan. Its northern hemisphere is shrouded in darkness for nearly 15 years, but the sun begins to illuminate the area again as it approaches its spring equinox. The Cassini spacecraft was able to detect the glint at the beginning of Titan’s spring in 2009. The moon’s hazy atmosphere scatters and absorbs many wavelengths of light, including most of the visible spectrum. But an onboard instrument was able to detect the glint in infrared wavelengths that can penetrate through Titan’s atmosphere. This image was created using wavelengths of light in the 5 µm range.

Image Credit: NASA

Titan Over Saturn

The Cassini spacecraft took this picture of Saturn’s Moon Titan looking at the side that always faces away from the planet because the moon’s orbit is tidal locked (like Earth’s Moon’s) Titan is the only moon in the Solar System with a dense atmosphere (visible in this picture), liquid on its surface, and a cycle of evaporation and liquid rain.

Image Credit: NASA

A Moon with Weather and Erosion

titan_cratersTitan is the only moon in the solar system with a thick atmosphere, and the only world besides Earth known to have lakes and seas on its surface. However, with a frigid surface temperature of around -290° F (94 K), the rain falling on Titan isn’t water. It’s liquid methane and ethane, compounds that are gases at room temperature on Earth.

Most of Saturn’s moons display their ancient faces pockmarked by thousands of craters. Titan, Saturn’s largest moon, looks younger than it really is because its craters are being eroded. Radar observations by the Cassini spacecraft show that dunes of hydrocarbon sand are filling in the craters.

This image taken with the Cassini radar shows two craters on Titan. On the left is crater Sinlap which is a relatively ‘fresh’ crater, with a depth-to-diameter ratio similar to is found on other large moons in the solar system such as Ganymede. One the right is Soi, an extremely eroded crater with a very small depth compared to similar craters on Ganymede. These craters are both about 80 km (almost 50 miles) in diameter.

Image Credit: NASA

Titan and Tethys

converted PNM fileSaturn’s moon Tethys with its prominent Odysseus Crater seems to lurk behind Saturn’s largest moon Titan in this image taken by the Cassini spacecraft in 2014.

The Titans were the pre-Olympian gods in Greek mythology. Tethys was a Titan daughter of Uranus and Gaia, sister and wife of the Titan Oceanus, and mother of the river gods and the Oceanids

Image Credit: NASA

The Dust Storms of Titan

Analysis of data taken by the Cassini spacecraft appears to show giant dust storms on Saturn’s moon Titan. Titian is the second largest moon in the Solar System (Jupiter’s moon Ganymede is slightly bigger.); it’s even lager than the planets Mercury and Pluto (Pluto is still a planet in the Hogewash! universe.). Titan is the only other body in the Solar System beside Earth that has stable surface liquid, hydrocarbons rather than water. If the dust storms are really occurring, it would join Earth and Mars as the only known bodies in the Solar System with dust storms.

The animation above is based on images captured by Cassini mission during several Titan flybys in 2009 and 2010. The bright spots that have been interpreted as evidence of the dust storms.

There’s more information about this at the NASA website.

Image Credit: NASA

Not a Solar Eclipse

titanbusy_cassini_960No, it’s not a solar eclipse. It’s a picture of the rings and a couple of the moons of Saturn. The large object near the center is Titan, Saturn’s largest moon and one of the most interesting objects in the entire Solar System. The central dark spot is the body of the moon. The bright halo is atmospheric haze above Titan. The gases of the atmosphere scatter sunlight. Saturn’s rings are shown nearly edge on. Enceladus, a small moon, is at about 4 or 5 o’clock at the edge of Titan.

This image was taken with the Cassini spacecraft’s camera pointing almost directly at the Sun, so the surfaces of Titan and Enceladus appear in silhouette, and the rings of Saturn look like a photographic negative.

Image Credit: NASA

A Reflection from Titan

titan_lake_flashThis image shows a flash of sunlight reflected off a lake on Titan, Saturn’s largest moon. Its northern hemisphere is shrouded in darkness for nearly 15 years, but the sun begins to illuminate the area again as it approaches its spring equinox. The Cassini spacecraft was able to detect the glint at the beginning of Titan’s spring in 2009. The moon’s hazy atmosphere scatters and absorbs many wavelengths of light, including most of the visible spectrum. But an onboard instrument was able to detect the glint in infrared wavelengths that can penetrate through Titan’s atmosphere. This image was created using wavelengths of light in the 5 µm range.

Image Credit: NASA

Broken Rings?

broken ringsThat’s not a gap in Saturn’s rings. It’s the planet’s shadow. During most of Saturn’s year, the planet’s shadow extends well beyond the edge of the rings.  However, with summer solstice fast approaching, the Sun is higher in Saturn’s sky and most of Saturn’s A ring is completely shadow-free.

Saturn’s large moon Titan, its northern hemisphere in sunlight of late spring, hangs above the rings.

Image Credit: NASA

The Mystery of Ligeia Mare

Titan Mare FeaturesThe images above were taken by the Radar instrument aboard the Cassini spacecraft. They show the evolution of a changing feature in the large hydrocarbon sea named Ligeia Mare on Saturn’s moon Titan. The small images in the column at left show the same region of Ligeia Mare as seen by Cassini‘s radar during flybys in (from top to bottom) 2007, 2013, 2014 and 2015.

Analysis suggests that the changes in the bright features are cause by either waves, solids at or beneath the surface, or bubbles. Waves are generally thought to be the most likely explanation, but tides or sea level and seafloor changes might be the cause.

The large image panel shows all of Ligeia Mare which is Titan’s second-largest liquid hydrocarbon sea and has a total area of about 130,000 square km, making it 50 percent larger than Lake Superior on Earth.

Image Credit:NASA