SN 1006

This mage of supernova remnant SN 1006 combines data from IXPE and the Chandra X-ray Observatory. The red, green, and blue elements reflect low, medium, and high energy X-rays, respectively, as detected by Chandra. The IXPE data, which measure the polarization of the X-ray light, is shown in purple in the upper left corner, with the addition of lines representing the outward movement of the remnant’s magnetic field.

IXPE (Imaging X-ray Polarimetry Explorer) is the joint mission by NASA the Italian Space Agency to study polarized X-ray light. It was launched two years ago today.

Image Credit: NASA

An Edge of the Cygnus Loop

 20,000 years ago, a star exploded leaving its remnants to expand into space. The resulting nebula, called the Cygnus Loop, forms a bubble-like shape that is about 120 light-years in diameter. The distance to its center is approximately 2,600 light-years from Earth.

Astronomers used Hubble to examine a very small slice of the leading edge of this expanding supernova bubble, where the supernova blast wave plows into surrounding material in space.This close-up look at a nearly two-light-year-long section shows filaments of glowing hydrogen.

Image Credit: NASA / ESA / STScI

SN 1987A

JWST’s NIRCam (Near-Infrared Camera) captured this detailed image of SN 1987A, the remnant of supernova 1987A). The material ejected from the supernova in the center of the remnant forms a keyhole shape. The faint crescents just outside the center were newly discovered by JWST.

Image Credit: NASA / ESA / CSA / M. Matsuura (Cardiff University) / R. Arendt (GSFC & UMBCy) / C. Fransson

The Oldest Known Supernova

This image combines data from four space telescopes to create a multi-wavelength view of all that remains of RCW 86, the oldest documented example of a supernova. Chinese astronomers witnessed the event in A. D. 185, recording a “guest star” that remained in the sky for eight months. X-ray images from NASA’s Chandra X-ray Observatory and the European Space Agency’s XMM-Newton Observatory were combined to form the blue and green colors in the image. The X-rays show the interstellar gas that has been heated to millions of degrees by the passage of the shock wave from the supernova. Infrared data from NASA’s Spitzer Space Telescope and WISE, Wide-Field Infrared Survey Explorer, shown in yellow and red, reveal dust radiating at a temperature of several hundred degrees below zero, warm by comparison to normal dust in our Milky Way galaxy.

Astronomers were able to determine from the X-ray and Infrared data that the cause of the explosion was a Type Ia supernova. In a Type 1a  supernova an otherwise-stable white dwarf or dead star is pushed beyond the brink of stability when a companion star dumps material onto it.

Scientists also used the data to solve another mystery surrounding the remnant: how it got to be so large in such a short amount of time. By blowing away wind prior to exploding, the white dwarf was able to clear out a huge cavity, a region of very low-density surrounding the system. The explosion into this cavity was able to expand much faster than it otherwise would have. This is the first time that this type of cavity has been verified around a white dwarf system prior to explosion. Scientists say the results may have significant implications for theories of white-dwarf binary systems and Type Ia supernovae.

RCW 86 is approximately 8,000 light-years away. At about 85 light-years in diameter, it occupies a region of the sky in the southern constellation of Circinus that covers slightly more of the sky than the full moon.

Image Credit: NASA/ESA

IC 443

ic443The Jellyfish Nebula (aka IC 443,) is the remnant of a supernova about 5,000 light years from Earth. Chandra X-ray Telescope observations show that the explosion that created the Jellyfish Nebula may have also formed a rapidly spinning neutron star, or pulsar.

When a massive star runs out of thermonuclear fuel, it implodes and forms a dense stellar core called a neutron star. The outer layers of the star collapse into the neutron star then bounce outward in a supernova explosion. A spinning neutron star that produces a beam of radiation is called a pulsar. As the radiation sweeps around like light from a lighthouse, it can be detected as pulses of radio waves and other types of radiation.

Click the image to embiggen it.

Image Credit: NASA

Cosmic Leftovers

DEM L 190These delicate filaments are actually sheets of debris from a stellar explosion in a neighboring galaxy, the Large Magellanic Cloud (LMC), a small companion galaxy to the Milky Way visible from the southern hemisphere. This remnant, know as N49 or DEM L 190, is from a massive star that died in a supernova blast thousands of years ago. This filamentary material will eventually be recycled into building new generations of stars in the LMC. Our own Sun and planets were formed from similar debris of supernovae that exploded in our own galaxy billions of years ago.

These filaments harbor a very powerful spinning neutron star that may be the central remnant from the supernova. It is quite common for the core of an exploded supernova star to become a spinning neutron star (or pulsar) after the immediate shedding of the supernova’s outer layers.  The pulsar in N 49 is spinning at a rate of once every 8 seconds. It also has a super-strong magnetic field a thousand trillion times stronger than Earth’s magnetic field. This places this star into the exclusive class of objects called “magnetars.”

Image Credit: NASA

Watching a Supernova Remnant Grow

This time-lapse video shows the movement of a supernova remnant that erupted approximately 1,700 years ago. The gaseous remains of an exploded star named 1E 0102.2-7219, is in the Small Magellanic Cloud, a satellite galaxy of our Milky Way. The opening frame shows ribbons of glowing gaseous clumps that make up the remnant. The video then toggles between a pair of black-and-white images taken 10 years apart, showing subtle shifts in the strands of gas over the decade. 

Video Credit: NASA / ESA / A. Pagan (STScI) / J. Banovetz and D. Milisavljevic (Purdue University)

Still More Cosmic Leftovers

This is a visualization of the supernova remnant known as SNR 0509-67.5 as seen by the Hubble Space Telescope. The delicate sphere of gas is being formed by the expanding blast wave from a supernova in the Large Magellanic Cloud, a small galaxy about 160,000 light-years from Earth. The ripples in the shell’s surface may be caused by either subtle variations in the density of the ambient interstellar gas, or they are possibly driven from the interior by pieces of the ejecta. The bubble-shaped shroud of gas is 23 light-years across and is expanding at more than 5,000 km/s.

Video Credit: NASA /ESA / G. Bacon, T. Borders, L. Frattare, Z. Levay, and F. Summers (STScI)

Cosmic Leftovers

This tangled web is an object known as SNR 0454-67.2. It’s a supernova remnant created after a massive star ended its life in a cataclysmic explosion and threw off its constituent material out into surrounding space. SNR 0454-67.2 lies in the Large Magellanic Cloud, a satellite galaxy of the Milky Way. The remnant is probably the leftovers from a Type Ia supernova explosion. A Type IA supernova is the death of a white dwarf star that grown by siphoning material from a stellar companion until it reached critical mass and exploded.

Image Credit: ESA / NASA

A “Young” Supernova Remnant

g306_wideAstronomers estimate that a supernova explosion occurs perhaps a couple of times a century in the Milky Way. The expanding blast wave and hot stellar debris slowly dissipate over hundreds of thousands of years, eventually mixing with and becoming indistinguishable from interstellar gas. The Swift satellite uncovered the previously unknown remains of a shattered star during an X-ray survey of the galaxy’s central regions. The new object, named G306.3-0.9 after it’s coordinates in the sky,is among the youngest of the 300+ known supernova remnants in the Milky Way. Analysis indicates that G306.3–0.9 is probably less than 2,500 years old. That would make it one of the 20 youngest supernova remnants identified.

This composite image of G306.3–0.9 (the blob in the lower left) was stitched together using data from Chandra X-ray observations (blue), infrared data acquired by the Spitzer Space Telescope (red and cyan) and radio observations (purple) from the Australia Telescope Compact Array.

G306_Swift_XRTjpgThe image on the left was taken in February, 2011, using Swift’s X-ray Telescope as part of the Galactic Plane Survey. The dots in the image indicate where X-rays struck the detector. Despite this short 8.5-minute exposure, the extended circular patch of G306.3–0.9 stands out quite nicely.

Image Credits: NASA

Sloshing Supernova

This animation was generated the first mapping data of radioactivity in a supernova remnant, the blown-out bits and pieces of a massive star that exploded. The data was take by a NASA satellite called NuSTAR. The results, from a remnant named Cassiopeia A (Cas A), reveal how shock waves probably rip apart massive dying stars.

While small stars like our Sun die less violent deaths, larger stars (at least eight times as massive as the Sun) end up as supernovae. The high temperatures and particles created in explosions fuse lighter elements together to create heavier elements. The explosions of supernovae seeding the universe with many elements, including the gold in jewelry, the calcium in bones, and the iron in blood.

NuSTAR is the first telescope capable of producing maps of radioactive elements in supernova remnants—in this case, titanium-44. The NuSTAR map of Cas A shows the titanium concentrated in clumps at the remnant’s center and suggests a possible solution to the mystery of how the star met its demise. When researchers simulate supernova blasts with computers, as a massive star dies and collapses, the main shock wave often stalls out and the star fails to shatter. The latest findings strongly suggest that Cas A sloshed around, re-energizing the stalled shock wave and allowing the star to finally blow off its outer layers.

Video Credit: NASA

The Red Bubble

This is a visualization of the supernova remnant known as SNR 0509-67.5 as seen by the Hubble Space Telescope. The delicate sphere of gas is being formed by the expanding blast wave from a supernova in the Large Magellanic Cloud, a small galaxy about 160,000 light-years from Earth. The ripples in the shell’s surface may be caused by either subtle variations in the density of the ambient interstellar gas, or they are possibly driven from the interior by pieces of the ejecta. The bubble-shaped shroud of gas is 23 light-years across and is expanding at more than 5,000 km/s.

Video Credit: NASA /ESA / G. Bacon, T. Borders, L. Frattare, Z. Levay, and F. Summers (STScI)