Video Credit: ESO
Video Credit: ESO
Video Credit: ESA / NASA / CSA / Digitized Sky Survey 2
The Orion Nebula is a stellar nursery 1,500 light-years from here. This false-color infrared view is about 40 light-years across and was assembled using data from the Spitzer Space Telescope. Looking at the nebula in visible light shows many newly-formed stars. This infrared image also shows the nebula’s many protostars still in the process of formation. They show up in the red areas of the image. One of the red spots along the dark dusty filament to the left is and odd protostar cataloged as HOPS 68. It wasrecently found to have crystals of the silicate mineral olivine within its protostellar envelope.
Image Credit: NASA
This false color image from infrared data taken by the Herschel Space Observatory shows a stellar nursery about 5,000 light-years away. These dust clouds are associated with the Rosette Nebula in the constellation Monoceros. The bright smudges are cocoons of dust surrounding massive embryonic stars, which will grow up to 10 times the mass of our Sun. The small spots near the center of the image are the embryos of less massive stars.
Image Credit: ESA
These swirls of gas and dust and the stars clustered in and around them are know as LH 95. It a region of low-mass, infant stars and their much more massive stellar neighbors found in the Large Magellanic Cloud.
The largest stars in LH 95 (those with at least 3X the mass of the Sun) generate strong stellar winds and high levels of UV radiation that heat the surrounding interstellar gas. The result is a bluish nebula of glowing hydrogen expanding outward into the molecular cloud that originally collapsed to form these massive stars. However, some dense parts of this star-forming region remain intact despite the stellar winds. The appear as dark dusty filaments in the picture. These dust lanes absorb some of the blue light emitted by the stars behind them causing them appear redder. Other parts of the molecular cloud have contracted to form infant stars, the fainter of which have a high tendency to cluster.
Image Credit: NASA
These swirls of gas and dust and the stars clustered in and around them are know as LH 95. It a region of low-mass, infant stars and their much more massive stellar neighbors found in the Large Magellanic Cloud.
The largest stars in LH 95 (those with at least 3X the mass of the Sun) generate strong stellar winds and high levels of UV radiation that heat the surrounding interstellar gas. The result is a bluish nebula of glowing hydrogen expanding outward into the molecular cloud that originally collapsed to form these massive stars. However, some dense parts of this star-forming region remain intact despite the stellar winds. The appear as dark dusty filaments in the picture. These dust lanes absorb some of the blue light emitted by the stars behind them causing them appear redder. Other parts of the molecular cloud have contracted to form infant stars, the fainter of which have a high tendency to cluster.
Image Credit: NASA
ESA’s Hershel spacecraft took this infrared image of a stellar nursery in the constellation Carina. The image combines observations at three different wavelengths: 70 µm (blue), 160 µm (green) and 250 µm (red). One day, these cold wisps of gas and dust will coalesce into stars.
Image Credit: ESA
Video Credit: ESO
Video Credit: NASA
These swirls of gas and dust and the stars clustered in and around them are know as LH 95. It a region of low-mass, infant stars and their much more massive stellar neighbors found in the Large Magellanic Cloud.
The largest stars in LH 95 (those with at least 3X the mass of the Sun) generate strong stellar winds and high levels of UV radiation that heat the surrounding interstellar gas. The result is a bluish nebula of glowing hydrogen expanding outward into the molecular cloud that originally collapsed to form these massive stars. However, some dense parts of this star-forming region remain intact despite the stellar winds. The appear as dark dusty filaments in the picture. These dust lanes absorb some of the blue light emitted by the stars behind them causing them appear redder. Other parts of the molecular cloud have contracted to form infant stars, the fainter of which have a high tendency to cluster.
Image Credit: NASA
Astronomers at ESO have taken this picture of the curious clouds around the star cluster NGC 3572. The image shows how clouds of gas and dust have been sculpted into whimsical bubbles, arcs, and the odd features known as elephant trunks by the stellar winds flowing from this gathering of hot young stars. The brightest of these cluster stars are much heavier than the Sun and will end their short lives as supernova explosions.
Image Credit: ESO