The Heart of the Galaxy

This image resembles red ink filtering through water or a crackling stream of electricity, but it is actually a view of our cosmic home. It’s the central plane of the Milky Way as seen by ESA’s Planck satellite and the Atacama Pathfinder Experiment (APEX) operated at an altitude of around 5100m in the Chilean Andes by the European Southern Observatory. While APEX is best at viewing small patches of sky in great detail, Planck data is ideal for studying areas of sky at the largest scales. The two data sets complement each other and offer a unique perspective on the sky.

The bright pockets scattered along the galactic plane this view are compact sources of submillimetre radiation: very cold, clumpy, dusty regions that may are being studied for information on multiple questions ranging from how individual stars form to how the entire Universe is structured. From right to left, notable sources include NGC 6334 (the rightmost bright patch), NGC 6357 (just to the left of NGC 6334), the galactic core itself (the central, most extended, and brightest patch in this image), M8 (the bright lane branching from the plane to the bottom left), and M20 (visible to the upper left of M8).

Image Credit: ESA / ESO

A Star Factory

Star cluster NGC 6193 and nebula NGC 6188Star cluster NGC 6193 is in the center of this image. It contains thirty or so bright stars and forms the heart of the Ara OB1 association (so named because it is in the southern constellation of Ara, the Altar). The two brightest stars are very hot giants. Together, they provide the main source of illumination for the nearby emission nebula, the Rim Nebula, or NGC 6188, visible to the right of the cluster.

The ultraviolet radiation and intense stellar wind from the stars of NGC 6193 seem to be driving the next generation of star formation in the surrounding clouds of gas and dust. As the gas and duct collapse, it forms new stars.

Image Credit: ESO

Lupus 3

The dark cloud of cosmic dust snaking across this wide field image is illuminated by the light of newborn stars. This dense cloud is a star-forming region called Lupus 3 where new stars are forming in the collapsing masses of gas and dust.

Image Credit: ESO