NGC 1097


NGC 1097NGC 1097 is a barred spiral galaxy. It’s also a Seyfert galaxy. These galaxies have supermassive black holes at their centers which are surrounded by accretion discs of in-falling material. Seen in visible light, most Seyfert galaxies look like normal spiral galaxies, but when studied in other wavelengths, the luminosity of their cores is of comparable intensity to that of entire galaxies the size of the Milky Way.

Dwarf elliptical galaxy NGC 1097A is a peculiar elliptical galaxy that orbits 42,000 light-years from the center of NGC 1097

Image Credit: ESO

A Protostar


Infant Star’s First StepsThis false color image from the Atacama Large Millimeter/submillimeter Array shows a pair of immense jets of dense gas with near-perfect symmetry radiating from a single source at the center of the picture. They’re coming from an extremely young star—a protostar—that is in the early stages of becoming a star much like the Sun. The baby star, known as CARMA-7, and its jets are located around 1,400 light-years from Earth in the Serpens South star cluster. That dense cluster is home to at least 30 more protostars that are being formed in close proximity to one another.

Image Credit: ESO

Missing Lithium


The globular star cluster Messier 54Most of the light chemical element lithium now present in the Universe was produced along with hydrogen and helium during the Big Bang but in much smaller quantities. Astronomers have calculated how much lithium they expect to find in the early Universe and from this work out how much they should see in old stars. But the calculations don’t match the observed values. There is about one-third of lithium in stars that we expect to see in our galaxy, The Milky Way.

This new image from the VLT Survey Telescope at ESO’s Paranal Observatory the globular cluster Messier 54, a star cluster that doesn’t belong to the Milky Way but is part of a small satellite galaxy, the Sagittarius Dwarf Galaxy. A team of astronomers has used the VLT to measure how much lithium there is in a selection of stars in Messier 54. They find that the levels are close to those in the Milky Way. So, whatever it is that got rid of the lithium seems not to be specific to the Milky Way.

Image Credit: ESO