The Crab Nebula

In 1054, observers around the world reported the appearance of a “new star” in the direction of the constellation Taurus. The remnant of that supernova is called the Crab Nebula, and it is powered by a quickly spinning, highly magnetized neutron star called a pulsar. The pulsar was formed when the massive star ran out of its nuclear fuel and collapsed. The combination of rapid rotation and a strong magnetic field in the Crab generates an intense electromagnetic field that creates jets of matter and anti-matter moving away from both the north and south poles of the pulsar and an intense wind flowing out in the equatorial direction.

This composite image of the nebula was created with data from the Chandra X-ray Observatory (blue and white), the Hubble Space Telescope (purple), and the Spitzer Space Telescope (pink).

Image Credit: NASA

Making a White Dwarf

NGC 40 is one of a class of objects called planetary nebulas, so-called because they look like the disk of a planet when viewed with a small telescope. This composite X-ray (blue)/optical (red) image of the nebula NGC 40 shows that it is a bubble of hot gas around a dying Sun-like star. In another 30,000 years or so, the nebula will dissipate, leaving behind a smallt, ultradense white dwarf star about the size of Earth.

Image Credit: X-ray—NASA / CXC  / RIT / J.Kastner & R.Montez.; Optical—NSF / AURA / NOAO / WIYN